
Overview Haskell Practical

Software System Design and Implementation

Introduction

Johannes Åman Pohjola
University of New South Wales

Term 2 2023

1

Overview Haskell Practical

Meet the staff

I am Johannes Åman Pohjola. I’m a lecturer at UNSW. I work on
the applications of formal mathematical methods to the
development of safe and secure software. He knows nothing about
beer.

Scott Buckley will deliver most of the practical lectures
(Thursday). He is a postdoctoral researcher, working on formal
mathematical methods for reasoning about timing side-channels.
He knows everything about beer.

Tsun Wang Sau is the course admin.

Rahul Tripathi and Raphael Douglas Giles will help out with
assignments, forum interaction and more. Rahul knows some
things about beer.

2

Overview Haskell Practical

Meet the staff

I am Johannes Åman Pohjola. I’m a lecturer at UNSW. I work on
the applications of formal mathematical methods to the
development of safe and secure software. He knows nothing about
beer.

Scott Buckley will deliver most of the practical lectures
(Thursday). He is a postdoctoral researcher, working on formal
mathematical methods for reasoning about timing side-channels.
He knows everything about beer.

Tsun Wang Sau is the course admin.

Rahul Tripathi and Raphael Douglas Giles will help out with
assignments, forum interaction and more. Rahul knows some
things about beer.

3

Overview Haskell Practical

Contacting Us

http://www.cse.unsw.edu.au/~cs3141

Forum

There is an Ed forum linked on the course website. Ask questions
there. To avoid spoiling solutions, you can and should ask private
questions.

Administrative questions should be sent to the course email

cs3141@cse.unsw.edu.au

4

http://www.cse.unsw.edu.au/~cs3141
cs3141@cse.unsw.edu.au

Overview Haskell Practical

Student Support

For help with anything else, there is always

Screenshot This Slide

Student Support student.unsw.edu.au/advisors

Equity Diversity and Inclusion (EDI) edi.unsw.edu.au/sexual-misconduct

Equitable Learning Services (ELS) student.unsw.edu.au/els

Academic Skills student.unsw.edu.au/skills

Special Consideration student.unsw.edu.au/special-consideration

Uni and Life in Australia
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health

Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

Student Support - I Need Help With...

My Feelings and Mental Health
Managing Low Mood, Unusual Feelings & Depression

Mental Health Connect

Mind HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support Line

Outside Australia Afterhours

24-hour Medibank Hotline
+61 (2) 8905 0307

5

Overview Haskell Practical

What is this course?

Our software should be
correct, safe and secure.

Our software should be
developed cheaply and quickly.

6

Overview Haskell Practical

Safety-uncritical Applications

;
Video games: Some bugs are acceptable, to save developer effort.

7

Overview Haskell Practical

Safety-critical Applications

Think of the worst group assignment you ever had!

Imagine you. . .

are logging into your online banking. . .

are investing in a new hedge fund. . .

are travelling in a self-driving car. . .

are travelling on a plane. . .

are getting treatment from a radiation therapy machine. . .

are about to launch nuclear missiles. . .

. . . using software written by your groupmates from that group.

8

Overview Haskell Practical

Safety-critical Applications

Think of the worst group assignment you ever had! Imagine you. . .

are logging into your online banking. . .

are investing in a new hedge fund. . .

are travelling in a self-driving car. . .

are travelling on a plane. . .

are getting treatment from a radiation therapy machine. . .

are about to launch nuclear missiles. . .

. . . using software written by your groupmates from that group.

9

Overview Haskell Practical

Safety-critical Applications

Think of the worst group assignment you ever had! Imagine you. . .

are logging into your online banking. . .

are investing in a new hedge fund. . .

are travelling in a self-driving car. . .

are travelling on a plane. . .

are getting treatment from a radiation therapy machine. . .

are about to launch nuclear missiles. . .

. . . using software written by your groupmates from that group.

10

Overview Haskell Practical

Safety-critical Applications

11

Overview Haskell Practical

What is this course?

Maths SoftwareCOMP3141

12

Overview Haskell Practical

What is this course?

Maths SoftwareCOMP3141

Maths?

Logic

Sets

Proofs

Induction

Algebra (a bit)

but no Calculus

MATH1081 is neither necessary nor sufficient for COMP3141.

13

Overview Haskell Practical

What is this course?

Maths SoftwareCOMP3141

Software?

Programming

Reasoning

Design

Testing

Types

Haskell

N.B: Haskell knowledge is not a prerequisite for COMP3141.

14

Overview Haskell Practical

What this course is not?

What this course is not?

not a Haskell course

not a formal verification course (see COMP4161),

not an OOP software design course (see COMP2511),

not a programming languages course (see COMP3161).

Certainly not a cakewalk; but hopefully not a soul-crushing
nightmare either.

15

Overview Haskell Practical

What this course is not?

What this course is not?

not a Haskell course

not a formal verification course (see COMP4161),

not an OOP software design course (see COMP2511),

not a programming languages course (see COMP3161).

Certainly not a cakewalk; but hopefully not a soul-crushing
nightmare either.

16

Overview Haskell Practical

What this course is not?

What this course is not?

not a Haskell course

not a formal verification course (see COMP4161),

not an OOP software design course (see COMP2511),

not a programming languages course (see COMP3161).

Certainly not a cakewalk; but hopefully not a soul-crushing
nightmare either.

17

Overview Haskell Practical

What this course is not?

What this course is not?

not a Haskell course

not a formal verification course (see COMP4161),

not an OOP software design course (see COMP2511),

not a programming languages course (see COMP3161).

Certainly not a cakewalk; but hopefully not a soul-crushing
nightmare either.

18

Overview Haskell Practical

What this course is not?

What this course is not?

not a Haskell course

not a formal verification course (see COMP4161),

not an OOP software design course (see COMP2511),

not a programming languages course (see COMP3161).

Certainly not a cakewalk; but hopefully not a soul-crushing
nightmare either.

19

Overview Haskell Practical

Assessment

Warning

For many of you, this course will present a lot of new topics. Even
if you are a seasoned programmer, you may have to learn as if you
were starting from scratch.

Class Marks (out of 100)

Two programming assignments, each worth 20 marks.
Weekly online quizzes, worth 20 marks.
Weekly programming exercises, worth 40 marks.

Final Exam Marks (out of 100, hurdle: 40)

result =
class + exam

2

20

Overview Haskell Practical

Assessment

Warning

For many of you, this course will present a lot of new topics. Even
if you are a seasoned programmer, you may have to learn as if you
were starting from scratch.

Class Marks (out of 100)

Two programming assignments, each worth 20 marks.
Weekly online quizzes, worth 20 marks.
Weekly programming exercises, worth 40 marks.

Final Exam Marks (out of 100, hurdle: 40)

result =
class + exam

2

21

Overview Haskell Practical

Lectures

Lecture (Wed 1pm-3pm): I introduce new material.

Practical (Thu 11am-1pm): Scott (usually) reinforces
Wednesday’s material with questions and examples.

Quiz: due on Thu (one week after the lectures they examine),
but start early!

22

Overview Haskell Practical

Books

We won’t set a textbook (a long COMP3141 tradition).

Resources: see the course outline for various books and online
resources that are useful for learning Haskell.

23

Overview Haskell Practical

Why Haskell?

This course uses Haskell, because it is the most widely used
language with good support for mathematically structured
programming.

You will learn a substantial amount of Haskell (we will provide
some guidance). But the course is about learning techniques
for mathematically structured programming.

24

Overview Haskell Practical

Why Haskell?

This course uses Haskell, because it is the most widely used
language with good support for mathematically structured
programming.

You will learn a substantial amount of Haskell (we will provide
some guidance). But the course is about learning techniques
for mathematically structured programming.

25

Overview Haskell Practical

About Haskell

Haskell is old!

It’s turning 33 this year.

Throughout the years: Haskell 98, Haskell 2010, GHC2021.

Warning

This means that some (possibly even most) tutorials, resources,
answers you find on the Internet will be outdated!

26

Overview Haskell Practical

About Haskell

Haskell is old! It’s turning 33 this year.

Throughout the years: Haskell 98, Haskell 2010, GHC2021.

Warning

This means that some (possibly even most) tutorials, resources,
answers you find on the Internet will be outdated!

27

Overview Haskell Practical

About Haskell

Haskell is old! It’s turning 33 this year.

Throughout the years: Haskell 98, Haskell 2010, GHC2021.

Warning

This means that some (possibly even most) tutorials, resources,
answers you find on the Internet will be outdated!

28

Overview Haskell Practical

About Haskell

Haskell is old! It’s turning 33 this year.

Throughout the years: Haskell 98, Haskell 2010, GHC2021.

Warning

This means that some (possibly even most) tutorials, resources,
answers you find on the Internet will be outdated!

29

Overview Haskell Practical

Demo 1: Haskell Workflow

Now we’ll give you a Haskell Crash Course.

This is to get you coding (solving problems) quickly.

If you prefer “deep” understanding, don’t worry: next week.

Demo: GHCi, Modules

30

Overview Haskell Practical

Demo 1: Haskell Workflow

Now we’ll give you a Haskell Crash Course.

This is to get you coding (solving problems) quickly.

If you prefer “deep” understanding, don’t worry: next week.

Demo: GHCi, Modules

31

Overview Haskell Practical

Demo 1: Haskell Workflow

Now we’ll give you a Haskell Crash Course.

This is to get you coding (solving problems) quickly.

If you prefer “deep” understanding, don’t worry: next week.

Demo: GHCi, Modules

32

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

Name of the function

“has type” Domain
Codomain

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

33

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

Name of the function

“has type”

Domain
Codomain

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

34

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

Name of the function

“has type” Domain

Codomain

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

35

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

Name of the function

“has type” Domain
Codomain

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

36

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

isEven x = x ‘mod‘ 2 == 0

Argument (Int) Result (Bool)

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

37

Overview Haskell Practical

Demo 2: Declaring Functions

isEven :: Int -> Bool

isEven x = x ‘mod‘ 2 == 0

Argument (Int) Result (Bool)

In mathematics, we would apply a function f to an argument x by
writing f (x). In Haskell we write f x, omitting the parentheses.

Demo: basic functions

38

Overview Haskell Practical

Demo 3: Currying
Haskell functions have one input domain and one output
codomain. But some functions take multiple inputs.

In mathematics, we treat log10(x) and log2(x) and ln(x) as
separate functions.

In Haskell, we have a single function logBase that, given a
number n, produces a function for logn(x).

log10 :: Double -> Double

log10 = logBase 10

log2 :: Double -> Double

log2 = logBase 2

ln :: Double -> Double

ln = logBase 2.71828

What’s the type of logBase?

39

Overview Haskell Practical

Demo 3: Currying
Haskell functions have one input domain and one output
codomain. But some functions take multiple inputs.

In mathematics, we treat log10(x) and log2(x) and ln(x) as
separate functions.

In Haskell, we have a single function logBase that, given a
number n, produces a function for logn(x).

log10 :: Double -> Double

log10 = logBase 10

log2 :: Double -> Double

log2 = logBase 2

ln :: Double -> Double

ln = logBase 2.71828

What’s the type of logBase?

40

Overview Haskell Practical

Demo 3: Currying

logBase :: Double -> (Double -> Double)

(parentheses are optional above, we could write:)

logBase :: Double -> Double -> Double

Function application associates to the left in Haskell, so:

logBase 2 64 ≡ (logBase 2) 64

Demo: currying, multiple arguments

41

Overview Haskell Practical

Demo 3: Currying

logBase :: Double -> (Double -> Double)

(parentheses are optional above, we could write:)

logBase :: Double -> Double -> Double

Function application associates to the left in Haskell, so:

logBase 2 64 ≡ (logBase 2) 64

Demo: currying, multiple arguments

42

Overview Haskell Practical

Demo 3: Currying

logBase :: Double -> (Double -> Double)

(parentheses are optional above, we could write:)

logBase :: Double -> Double -> Double

Function application associates to the left in Haskell, so:

logBase 2 64 ≡ (logBase 2) 64

Demo: currying, multiple arguments

43

Overview Haskell Practical

Demo 4: Tuples

We now know how to handle multiple inputs to a function? But
what if we want to have multiple outputs?

Haskell provides data types called tuples to handle multiple
outputs:

neighbors :: Int -> (Int, Int)

neighbors x = (x - 1, x + 1)

Now, (neighbors 1) evaluates to (0,2).

Demo: tuples

44

Overview Haskell Practical

Demo 4: Tuples

We now know how to handle multiple inputs to a function? But
what if we want to have multiple outputs?
Haskell provides data types called tuples to handle multiple
outputs:

neighbors :: Int -> (Int, Int)

neighbors x = (x - 1, x + 1)

Now, (neighbors 1) evaluates to (0,2).

Demo: tuples

45

Overview Haskell Practical

Demo 5: Higher Order Functions

In addition to returning functions, functions can take other
functions as arguments:

applyTwice :: (t -> t) -> t -> t

applyTwice f x = f (f x)

square :: Int -> Int

square x = x * x

fourthPower :: Int -> Int

fourthPower = applyTwice square

Demo: higher-order functions, equational reasoning

46

Overview Haskell Practical

Demo 6: Lists

Haskell makes extensive use of lists, constructed using square
brackets. Each list element must be of the same type.

[True, False, True] :: [Bool]

[3, 2, 5+1] :: [Int]

[sin, cos] :: [Double -> Double]

[(3,’a’),(4,’b’)] :: [(Int, Char)]

47

Overview Haskell Practical

Demo 6: Lists

A useful function is map, which, given a function, applies it to each
element of a list:

map not [True, False, True] = [False, True, False]

map square [3, -2, 4] = [9, 4, 16]

map (\x -> x + 1) [1, 5] = [2, 6]

The last example here uses a lambda expression to define a
one-use function without giving it a name.

What’s the type of map?

map :: (a -> b) -> [a] -> [b]

48

Overview Haskell Practical

Demo 6: Lists

A useful function is map, which, given a function, applies it to each
element of a list:

map not [True, False, True] = [False, True, False]

map square [3, -2, 4] = [9, 4, 16]

map (\x -> x + 1) [1, 5] = [2, 6]

The last example here uses a lambda expression to define a
one-use function without giving it a name.

What’s the type of map?

map :: (a -> b) -> [a] -> [b]

49

Overview Haskell Practical

Demo 6: Lists

A useful function is map, which, given a function, applies it to each
element of a list:

map not [True, False, True] = [False, True, False]

map square [3, -2, 4] = [9, 4, 16]

map (\x -> x + 1) [1, 5] = [2, 6]

The last example here uses a lambda expression to define a
one-use function without giving it a name.

What’s the type of map?

map :: (a -> b) -> [a] -> [b]

50

Overview Haskell Practical

Demo 6: Lists

The type String in Haskell is just a list of characters:

type String = [Char]

This is a type synonym, like a typedef in C.

Thus:

"hi!" == ['h', 'i', '!']

Demo: lists

51

Overview Haskell Practical

Word Frequencies
Let’s solve a problem to get some practice implementing stuff:

Example (Task 1)

Given a number n and a string s containing English words, generate
a report that lists the n most common words in the given string s.

I’ll even give you an algorithm:

1 Break the input string into words.

2 Convert the words to lowercase.

3 Sort the words.

4 Group adjacent occurrences (runs) of the same word.

5 Sort runs words by length.

6 Take the longest n runs of the sorted list.

7 Generate a report.

Demo: word frequencies

52

Overview Haskell Practical

Word Frequencies
Let’s solve a problem to get some practice implementing stuff:

Example (Task 1)

Given a number n and a string s containing English words, generate
a report that lists the n most common words in the given string s.

I’ll even give you an algorithm:

1 Break the input string into words.

2 Convert the words to lowercase.

3 Sort the words.

4 Group adjacent occurrences (runs) of the same word.

5 Sort runs words by length.

6 Take the longest n runs of the sorted list.

7 Generate a report.

Demo: word frequencies
53

Overview Haskell Practical

The Dollar Pattern

We used the dollar operator $ to reduce the use of parentheses.

The dollar operator does normal function application, like f x

(evaluation of a function at a value).

However, while application has high operator precedence (“is
done as early as possible”), the dollar operator has extremely
low precedence (“is done as late as possible”).

reverse [1,2,3] ++ [4] results in [3,2,1,4]. The
application of the reverse function binds very tightly, so we
do it first, then concatenate.

reverse $ [1,2,3] ++ [4] results in [4,3,2,1]. We
concatenate first, then apply the reversing function. Same as
reverse ([1,2,3] ++ [4]).

54

Overview Haskell Practical

The Dollar Pattern

We used the dollar operator $ to reduce the use of parentheses.

The dollar operator does normal function application, like f x

(evaluation of a function at a value).

However, while application has high operator precedence (“is
done as early as possible”), the dollar operator has extremely
low precedence (“is done as late as possible”).

reverse [1,2,3] ++ [4] results in [3,2,1,4]. The
application of the reverse function binds very tightly, so we
do it first, then concatenate.

reverse $ [1,2,3] ++ [4] results in [4,3,2,1]. We
concatenate first, then apply the reversing function. Same as
reverse ([1,2,3] ++ [4]).

55

Overview Haskell Practical

The Dollar Pattern

We used the dollar operator $ to reduce the use of parentheses.

The dollar operator does normal function application, like f x

(evaluation of a function at a value).

However, while application has high operator precedence (“is
done as early as possible”), the dollar operator has extremely
low precedence (“is done as late as possible”).

reverse [1,2,3] ++ [4] results in [3,2,1,4]. The
application of the reverse function binds very tightly, so we
do it first, then concatenate.

reverse $ [1,2,3] ++ [4] results in [4,3,2,1]. We
concatenate first, then apply the reversing function. Same as
reverse ([1,2,3] ++ [4]).

56

Overview Haskell Practical

Function Composition

We used function composition to combine our functions together.
The mathematical (f ◦ g)(x) is written (f . g) x in Haskell.

In Haskell, operators like function composition are themselves
functions. You can define your own!

-- Vector addition

(.+) :: (Int, Int) -> (Int, Int) -> (Int, Int)

(x1, y1) .+ (x2, y2) = (x1 + x2, y1 + y2)

(2,3) .+ (1,1) == (3,4)

You could even have defined function composition yourself if it
didn’t already exist:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

57

Overview Haskell Practical

Function Composition

We used function composition to combine our functions together.
The mathematical (f ◦ g)(x) is written (f . g) x in Haskell.

In Haskell, operators like function composition are themselves
functions. You can define your own!

-- Vector addition

(.+) :: (Int, Int) -> (Int, Int) -> (Int, Int)

(x1, y1) .+ (x2, y2) = (x1 + x2, y1 + y2)

(2,3) .+ (1,1) == (3,4)

You could even have defined function composition yourself if it
didn’t already exist:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

58

Overview Haskell Practical

Conditionals

Demo: polarity using guards, if statements.

Demo: (if we have time), loops via recursion.

59

Overview Haskell Practical

Lists

We used a bunch of list functions. How could we implement them
ourselves??

Lists are singly-linked lists in Haskell. The empty list is written as
[] and a list node is written as x : xs. The value x is called the
head and the rest of the list xs is called the tail. Thus:

"hi!" == ['h', 'i', '!'] == 'h':('i':('!':[]))

== 'h' : 'i' : '!' : []

When we define recursive functions on lists, we use the last form
for pattern matching:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

60

Overview Haskell Practical

Lists

We used a bunch of list functions. How could we implement them
ourselves??

Lists are singly-linked lists in Haskell. The empty list is written as
[] and a list node is written as x : xs. The value x is called the
head and the rest of the list xs is called the tail. Thus:

"hi!" == ['h', 'i', '!'] == 'h':('i':('!':[]))

== 'h' : 'i' : '!' : []

When we define recursive functions on lists, we use the last form
for pattern matching:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

61

Overview Haskell Practical

Lists

We used a bunch of list functions. How could we implement them
ourselves??

Lists are singly-linked lists in Haskell. The empty list is written as
[] and a list node is written as x : xs. The value x is called the
head and the rest of the list xs is called the tail. Thus:

"hi!" == ['h', 'i', '!'] == 'h':('i':('!':[]))

== 'h' : 'i' : '!' : []

When we define recursive functions on lists, we use the last form
for pattern matching:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

62

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!"

≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

63

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

64

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

65

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

66

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

67

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

68

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

69

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

70

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

71

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

72

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

73

Overview Haskell Practical

Equational Evaluation
map f [] = []

map f (x:xs) = f x : map f xs

We can evaluate programs equationally:

map toUpper "hi!" ≡ map toUpper (’h’:"i!")

≡ toUpper ’h’ : map toUpper "i!"

≡ ’H’ : map toUpper "i!"

≡ ’H’ : map toUpper (’i’:"!")

≡ ’H’ : toUpper ’i’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper "!"

≡ ’H’ : ’I’ : map toUpper (’!’:"")

≡ ’H’ : ’I’ : ’!’ : map toUpper ""

≡ ’H’ : ’I’ : ’!’ : map toUpper []

≡ ’H’ : ’I’ : ’!’ : []

≡ "HI!"

74

Overview Haskell Practical

FIN

The quiz will be up on the course website sometime on Thursday.

Warning

The quiz is assessed. The deadline is the end of next Thursday.

75

	Overview
	

	Haskell
	

	Practical
	

